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Abstract
We have studied the ground state of one-dimensional Hubbard superlattice structures with
different unit-cell sizes in the presence of an electric field. A self-consistent Hartree–Fock
approximation calculation is done in the weak- to intermediate-interaction regime. Studying the
charge gap at the Fermi level and the charge density structure factor, we get an idea of how the
charge modulation on the superlattice is governed by the competition between the electronic
correlation and the external electric field.

1. Introduction

The study of low-dimensional metallic multilayered struc-
tures [1] is interesting because of their unique characteristics.
The oscillation of exchange coupling between magnetic lay-
ers [2] and the appearance of giant magnetoresistance [3] are
among the exciting features of the multilayers. To investi-
gate the properties of the metallic multilayers many theoretical
works have been done taking simple superlattice structures as
the models [4–8]. This kind of model consists of a periodic ar-
rangement of NU sites with repulsive on-site Coulomb interac-
tion U (> 0), followed by N0 sites with no on-site interaction
(U = 0). Some of these works investigated the ordering [4–7]
of the ground state, while others explored the possibility of
the metal–insulator transition in these systems [7, 8]. There
are possibilities for formation of novel ground states such as
charge ordered or spin ordered ones depending on the distribu-
tion of the interaction parameter U in such superlattices.

On the other hand, the effect of electric field on
strongly correlated low-dimensional electronic systems has
attracted much interest in recent years because of their
practical applications in tuning dielectric and piezoelectric
properties [9]. Many experiments have been done on these
low-dimensional systems in the presence of electric field. It
was found that spin ordered or charge ordered phases of a
Mott insulator collapse in an electric field [10–14]. Also some
theoretical works are done on such systems in which a uniform

electric field is implemented in the form of a ramp potential.
Applying such an electric field in the homogeneous Hubbard
model it was found that the field can induce oscillations in the
charge gap of these systems [15, 16]. However, it is not yet
known how the superlattice systems behave in the presence of
such an electric field.

In this work, we investigate the electronic properties of
simple superlattice structures in the presence of electric field.
We consider the weak- to intermediate-interaction regime and
work under the Hartree–Fock approximation (HFA).

2. The model and the Hartree–Fock approximation

Our model is a one-dimensional N-site Hubbard chain with
open boundaries. The model Hamiltonian is

H =
∑

i

εi ni +t
∑

i,σ

(c†
i,σ ci+1,σ +H.c.)+

∑

i

Ui ni,↑ni,↓, (1)

where c†
i,σ (ci,σ ) is the creation (annihilation) operator for an

electron with spin σ (↑ or ↓) at the i th site. ni,σ = c†
i,σ ci,σ ,

and ni = ∑
σ ni,σ is the number operator at the i th site; t is

the hopping integral between the nearest neighbor sites. Ui

denotes the on-site Coulomb repulsion at the i th site; in a
superlattice the Ui follow a repeated pattern depending on the
size of the unit cell of the superlattice. εi is the site energy of
the i th site. In the absence of electric field all the εi are set to
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Figure 1. Two different types of superlattice structures studied in the
present work. The arrow shows the direction of the electric field.

zero. The external electric field is applied to the system in the
form of a ramp potential [15]. In the presence of this field the
site energies become

εi = − V

2
+ i

V

N + 1
,

where V is the applied voltage. This form of the site potential
is used to ensure that the external bias varies from −V/2
to V/2 across the superlattice. We will work in the weak
to intermediate coupling regime where U � t . It was
observed in a previous work that in this regime the mean field
approximation is quite reliable for this class of systems [7].

We decouple the Hamiltonian using the unrestricted
Hartree–Fock approximation (HFA),

Uni,↑ni,↓ → U〈ni,↑〉ni,↓ + Uni,↑〈ni,↓〉 − U〈ni,↑〉〈ni,↓〉, (2)

where 〈· · ·〉 denotes the expectation value calculated with
respect to the ground state. Now the Hamiltonian can be
divided into two parts for the two types of spins, i.e. H =
H↑ + H↓. In an unrestricted Hartree–Fock approximation, one
determines the distribution of the ni,σ by diagonalizing H↑ and
H↓ in a self-consistent manner. The ground state is constructed
by filling the energy levels from both the up- and the down-spin
bands up to the Fermi level.

In this paper, we have presented the results for two
different types of superlattice structures as shown in figure 1.
For the first one the size of the unit cell is two and for the
second one it is three. We have taken two types of sites with on-
site correlation parameters U = 1 and U = 0 respectively. We
have set t = 1. We have studied the superlattices for various
values of N . Since our aim is to compare the effects of the
electric field on different superlattice structures of small size,
we have presented here the results for the cases with N = 60
and 120 only. Comparing the results for these two system sizes
one can also obtain an idea of what happens in the infinite limit.

To study the effect of the electric field on the
metallic/insulating behavior of the ground state, we performed
a systematic study of the charge gap (�) at the Fermi level of
the system containing n electrons,

� = En+1 + En−1 − 2En, (3)

where En is the ground state energy of an n electron system.
We have also studied the charge density wave (CDW) structure
factor

C(q) = 1

N

∑

i, j

eiq(ri −r j )(ni − ρ)(n j − ρ), (4)

Figure 2. Variation of the charge gap (�) at the Fermi level for the
homogeneous Hubbard chain at half-filling with the applied voltage
(V ). The solid line corresponds to N = 60, while the dotted line
shows the case of N = 120.

where ρ is the average particle density on the superlattice, rp

denotes the position of the pth site and q is the wavevector.
These two quantities enable us to capture the competition
between the electric field and the correlation parameter in
determining the charge modulation along the superlattice.

3. Results of HFA calculations

It is well known that in the absence of an electric field
a homogeneous Hubbard chain is an antiferromagnetically
ordered system with a finite charge gap at half-filling [17, 18].
Figure 2 shows the variation of the charge gap with the electric
field for a half-filled homogeneous Hubbard chain. It is clear
from the diagram that the charge gap goes through a number
of maxima and minima with increasing electric field. As N
increases the minima shift towards lower values of V . The
nature of variation of the charge gap is in good qualitative
agreement with the previous density matrix renormalization
group (DMRG) results [15].

Now we discuss the results for the –0–U– superlattice
structure. At half-filling the system is a CDW insulator with
q = π in the absence of electric field [5, 7] and the charge
gap is finite (V = 0 case in figure 3(a)). As we turn on
and gradually increase the electric field, the charge gap passes
through a number of maxima and minima. For N = 60 and
120 the variation of the charge gap are shown in figure 3(a).
The type of oscillation of the charge gap with electric field
is quite similar to that observed in the homogeneous system
(figure 2). These oscillations are observable only in the finite
sized systems and are crucially controlled by the interplay of
the Hubbard interaction and the spatial gradient of the external
bias. In the absence of electric field, the CDW phase (with
q = π ) at half-filling has the tendency to form ‘doublons’
(↑↓) at the sites with U = 0, while the sites with U > 0
tend to depopulate. When the electric field is increased the
electrons are pushed back near one end of the lattice. This
leads to population of some sites with U > 0, leading to
the breakdown of the q = π CDW phase. Such a crossover
from the CDW phase is marked by the first minimum in
the charge gap. Subsequent increase in the electric field
results in gradual accumulation of electrons in one half of the
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Figure 3. Variations of the charge gap (�) at the Fermi level of the
superlattice systems with the applied voltage (V ); (a) for a –0–U–
superlattice at half filling, (b) for a –0–0–U– superlattice at 2

3 filling
and (c) for a –0–0–U– superlattice at half filling respectively. The
solid line corresponds to N = 60, while the dotted line shows the
case of N = 120.

superlattice. Because of the competition between the Coulomb
correlation energy and the electric field term, the aforesaid
process of piling up of electrons takes place only after finite
increments of electric field in a finite sized system. This results
in the oscillation in the charge gap.

Next we study the CDW structure factor of this model.
Generally speaking, from the mean field point of view, all sites
with the same value of U in a superlattice are of same status.
So a peak depending on the periodicity of the structure of the
superlattice appears in the charge density structure factor. Our
method also detects other peaks in the C(q) that depend on
the specific values of the density (i.e. the position of the peak
depends on the Fermi wavevector kF). As the system size
N increases, the peak due to the structural periodicity of the
lattice becomes larger compared to the other peaks. Under
periodic boundary conditions or in the limit of N → ∞, only
the peak due to the structural modulation survives and the other
peaks disappear.

Referring to the specific case of the –0–U– superlattice
at half-filling, there is a sharp peak in C(q) at q � π in the
absence of electric field (figure 4(a)). Incidentally, in this case

Figure 4. Charge density structure factor C(q) for the half-filled
–0–U– superlattice systems; (a) for V = 0.0 and (b) for V = 1.25
respectively. The solid line corresponds to N = 60, while the dotted
line represents the case of N = 120.

the peak due to the periodicity of the lattice structure and the
2kF peak both occur at q � π . As the electric field is increased,
after a critical value of the same, a peak at q � 0 is seen (see
figure 4(b)). This is due to accumulation of the charges near
one side of the chain. At this value of the electric field, the
peak at q � π starts to get diminished. For larger electric
field, the peak at q � 0 becomes larger at the cost of the peak
at q � π . In figure 5(a) the variations of the magnitudes of
the peaks at q � 0 and q � π are shown. It clearly shows
that the value of the electric field at which the q � 0 peak
becomes significant is as same as the value of the electric field
where the first minimum of the charge gap oscillation occurs
(see figure 3(a)). So it is clear that at this value of the electric
field charge accumulation at one side of the chain begins to
dominate and the charge ordering tends to get destroyed. This
point can be taken as a transition point, though on either side
of it the system remains insulating. By observing the increase
in height of the peak at q � 0, one can easily understand how
the charge accumulation on one side of the chain grows with
electric field.

In figure 3(b) we present the variation of the charge gap
with the electric field for the other system, the –0–0–U–
superlattice at two-thirds filling. At zero electric field, the
electrons try to accumulate at the sites with zero Hubbard
interaction as this minimizes the energy. As a result, the
system is a charge ordered insulator with a finite charge gap.
A sharp peak of C(q) at q � 2π

3 is obtained. Here also
the density dependent 2kF peak and the peak due to the
structural periodicity of the lattice occur at the same q (� 2π

3 ).
On application of the electric field, the charge gap initially
increases and then gradually falls. Subsequent oscillations are
observed as in the previous case of the –0–U– model.
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Figure 5. Variations of the height of the peaks in C(q) for the
superlattice systems with the applied voltage (V ); the dashed line is
for the peak at q � 0, while the solid line is for the peak at q � π
and q � 2π

3 in (a) the –0–U– superlattice at half filling and (b) the
–0–0–U– superlattice at two-thirds filling respectively.

The initial increase in the charge gap for small values
of the electric field can be understood in the following way.
In a particular cell of this –0–0–U– superlattice at two-thirds
filling, the two sites on the left (with U = 0) are preferred by
the electrons in the absence of electric field; they tend to be
doubly occupied, keeping the other site empty. In this situation
a charge density wave is formed in the chain. For nonzero
electric field, there is a positive gradient of the site potentials
towards the right (see figure 1). Then the distribution of the
site potentials in a unit cell of the superlattice is in unison with
the distribution of the correlation parameter. This phenomenon
reinforces the aforesaid charge ordering for small values of the
electric field. So an increase in the value of the charge gap is
observed. For larger electric field, however, the spatial gradient
of the site potentials becomes so large that a global shift of
the charges towards the left is preferred in the chain and the
charge ordering is destroyed. Also for the –0–U– model a
trace of such feature is observed for low electric field. There
is a change in the slope of the charge gap as a function of the
applied voltage, for a low value of the voltage (see figure 3(a)).
Since in this case the unit cell contains only two sites, the
feature only shows up weakly. In contrast, we have noted
that for the –U–0–0– model and –U–0– model this type of
enhancement of charge ordering for small values of the electric
field is absent. In these cases, on application of the electric field
the charge gaps initially fall and then subsequent oscillations
are observed.

Figure 5(b) shows the variation of the heights of the peaks
of C(q) with external bias for the –0–0–U– model; the type of
variation is quite similar to the previous case of the –0–U–
model. The peak at q � 2π

3 starts to fall and a peak at
q � 0 appears at a critical value of the electric field. This

Figure 6. Variations of the charge gap (�) at the Fermi level for the
quarter-filled superlattice systems with the applied voltage (V ):
(a) for the –0–U– superlattice and (b) for the –0–0–U– superlattice
respectively. The solid line corresponds to N = 60, while the dotted
line shows the case of N = 120.

critical value again matches with the value of the electric field
at which the first minimum of the charge gap oscillation occurs
in figure 3(b). So in this case also it makes a transition from a
CDW phase to a phase where electrons pile up at one end.

We have shown the variation of the charge gap for the
–0–0–U– superlattice at half-filling in figure 3(c) for the
sake of comparison with the other half-filled cases shown
in figures 2 and 3(a). Here at V = 0 the gap diminishes
with larger values of N , indicating a metallic behavior at the
thermodynamic limit. An increase in V drives the system
ultimately to an insulating one.

We have also studied the quarter-filled cases for our
superlattice models. Figures 6(a) and (b) show the charge gap
oscillations in the –0–U– and –0–0–U– models respectively.
Both the systems are metallic in the absence of the electric
field; the charge gap � ∼ 1

N , N being the system size.
With the increase of electric field the charge gap oscillates
between a number of maxima and minima, and then increases
monotonically, indicating an insulating phase.

In figure 7 we plot the C(q) for both types of superlattice
at quarter-filling in the absence of the electric field. For the
–0–U– model (figure 7(a)), we see a dominant peak at q =
π , which is due to the structural periodicity of the lattice.
Apart from this, a 2kF peak appears at q � π

2 . Also, a
few other wiggles due to various possible short length scale
density modulations are observed. For the –0–0–U– model
(figure 7(b)) also, the dominant peak is due to the lattice
structure and it occurs at q = 2π

3 . Here also other wiggles due
to different possible density modulations are obtained along
with the 2kF peak (q � π

2 ).
It can be seen explicitly, in the limit U = 0, that the

position of the 2kF peak in finite chains is shifted from the
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Figure 7. Charge density structure factor C(q) for the quarter-filled
superlattice systems at zero electric field: (a) for the –0–U–
superlattice and (b) for the –0–0–U– superlattice respectively. The
solid line corresponds to N = 60, while the dotted line shows the
case of N = 120.

expected position q = 2kF = nπ/(N +1) (n being the number
of occupied single particle levels) by an amount ∼ 1

N . As the
system size N increases, they approach the actual 2kF value.
On the other hand, the peak heights fall as 1

N . So in the large
N limit (and also under periodic boundary conditions) the 2kF

peaks are not detectable.
As the electric field is turned on and increased, a peak

at q � 0 appears for both the models at quarter-filling. The
peak due to the structural periodicity and the 2kF peak (also
the wiggles in C(q)) fall off; the rate of fall is much slower
for the structural periodicity peak. These show the gradual
accumulation of the charges near one side of the chain. In
figure 8 variations of the heights of the peaks in the C(q)

with the external bias are shown. It clearly shows how charge
accumulation at one side of the chain increases with electric
field.

4. Conclusion

In this work, we have studied the one-dimensional Hubbard
superlattices with different types of unit cells in the presence of
electric field. The single-orbital nearest-neighbor tight-binding
model has been used. We have maintained fixed system sizes
(N = 60 and 120) for the purpose of comparison of these
models. The charge gap and the CDW structure factor of the
systems are studied under the Hartree–Fock approximation in
the presence of electric field. To check the reliability of the
Hartree–Fock approximation results, we compared our results
for the homogeneous Hubbard model with a previous DMRG
calculation [15] and found reasonable qualitative agreement.
Oscillations in charge gap obtained in the superlattice systems

Figure 8. Variations of the height of peaks in C(q) for the
quarter-filled superlattice systems with the applied voltage (V ); the
dashed line is for the peak at q � 0, the short dashed line is for the
peak at q � π

2 (2kF) and the solid line is for the peak due to the
structure (a) for the –0–U– superlattice and (b) for the –0–0–U–
superlattice respectively.

are rather similar to those observed in the homogeneous
Hubbard chains, showing the signature of finite size. Variations
of the heights of different peaks of C(q) with the applied
electric field give an idea about the distribution of electrons on
the lattice. We found that the 2kF peaks of C(q) arise for finite
sized systems only. On application of the electric field a peak at
q � 0 appears at a critical value of the field and then increases
in height; other peaks fall gradually, indicating suppression of
the ordering due to the Hubbard correlation on the superlattice.
The rate of fall of the peak corresponding to the structural
periodicity is much slower than the 2kF peak. At the critical
value of the electric field where the peak at q � 0 appears
in C(q), the first minimum of the charge gap is observed for
the systems which were initially charge ordered. The present
mean field approximation is capable of detecting the variations
of the charge structure with the electric field. One can also use
other methods to study these features. We have presented here
only two types of superlattices with a few different fillings.
For other superlattice structures and for other fillings the effect
of the electric field may also be explored. The superlattices
at finite temperatures may reveal some interesting features on
application of the electric field.
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